4.3.正常使用极限状态计算4,3 1 本条对管道结构正常使用条件下的极限状态计算内容作了规定.这些要求主要针对管道结构的耐久性。保证其使用年限.提高工程投资效益 4、3,2.本条对柔性管道的允许变形量作了规定,原规范仅对水泥砂浆内衬作出现定,控制管道的最大竖向变形量不宜超过0.02 从工程实践来看,此项允许变形量与水泥砂浆的配制及操作成型工艺密切相关、例如手工涂抹和机械成型.其质量差异显著 砂浆配制掺入适量的纤维等增强抗力材料,将改善砂浆的延性性能等.据此。条文对水泥砂浆内衬的允许变形量 规定可以有一定的幅度,供工程技术人员对应采用。此外 条文还结合近十年来防腐内衬材料的引进和开拓 管材品种的多种开发.增补了对防腐涂料内衬和化学管材的允许变形量的规定,这些规定与国外相应标准的要求基本上协调一致 4、3、3。4.3、7,条文对钢筋混凝土管道结构的使用阶段截面计算做出了规定.这些要求和原规范的规定是协调一致的,1,当在组合作用下,截面处于受弯或大偏心受压,拉时,应控制其最大裂缝宽度.不应大于0、2mm。确保结构的耐久性 符合使用年限的要求,同时明确此时可按长期效应的准永久组合作用计算。2。当在组合作用下.截面处于轴心受拉或小偏心受拉时。应控制截面的裂缝出现。此时一旦形成开裂即将贯通全截面.直接影响管道结构的水密性要求和正常使用、因此相应的作用组合应取短期效应的标准组合作用计算 4,3。8.本条对柔性管道的变形计算给出了规定、相应的组合作用应取长期效应的准永久组合作用计算.原规范规定的计算模型系按原苏联1958年。地下钢管设计技术条件和规范 采用 该计算模型由前苏联学者Л、М、ЕмеΛьянов提出 其理念系依照地下柔性管道的受载程序拟定、即管子在沟槽中安装后.沟槽回填土使管体首先受到侧土压力使柔性管产生变形 向土体方向的变形导致土体的弹性抗力、据此计算管体在竖向.侧向土压力和弹性土抗力作用下管体的变形、如图4。3 8、所示。当管体上下受到相等的均布压力p时、管体上任一点半径向位移ω为,按此式可得管顶和管侧的变位置是相同的,当管体仅受到侧向土压力时。亦将产生变形、其方向则与竖向土压作用相反.由于管侧土压力值要小于竖向土压力,例如1,3、因此管体的最终变形还取决于竖向土压力导致的变形形态,应该认为原规范引用的计算模型在理念上还是清楚的,但与通常的弹性地基上结构的计算模型不相协调,后者的结构上的受力.只需计算结构上受到的组合作用以及由此形成的弹性地基反力,美国spang1er 氏即是按此理念提出了计算模型,获得国际上广为应用。据此条文修改为采用spang1er、计算模型、以使在柔性管的变形计算方法上与国际沟通,协调一致,另外、在条文给定的计算变形公式中 引入了变形滞后效应系数DL。此项系数取1,0.1,5.主要是管侧土体并非理想的弹性体,在抗力的长期作用下.土体会产生变形或松弛,管侧回填土的压实密度越高、滞后变形效应越显著,粘性土的滞后变形比砂性土历时更长、这一现象已被国内、外工程实践检测所证实,例如国内曾对北京市第九水厂DN2600mm,输水管进行管体变形追踪检测,显然此项变形滞后系数取值 不仅与埋地管道覆土竣工到投入运行的时间有关.还与管道的运行功能相关,如果是压力运行.内压将使管体变形复圆,因此,对变形滞后系数的取值 对无压或低压管。内压在0 2MPa.以内、应取接近于1.5,的数值,对于压力运行管道,竣工所投入运行的时间较短。例如不超过3、个月 则可取1,0 计算,亦即可以不考虑滞后变形的因素。对压力运行管道。从竣工到运行时间较长时 则可取1。0。DL,1。5,作为设计计算采用值 4、3 9.4 3 11。有关条文规定可参阅 给水排水构筑物结构设计规范 相应条文的说明、